
International Journal of Scientific & Engineering Research, Volume 12, Issue 6, June-2021
ISSN 2229-5518

Software Development Life Cycle for
Environmental Sustainability

Likhit J Jain1, Nischala Prasad1, Nishitha B N1, Guru Darshan1, Hemanth Kumar1, Kushagra Galundia1, Sheela S V2

1Student, Department of Information Science and Engineering, BMS College of Engineering, Bangalore, India.
2Professor, Department of Information Science and Engineering, BMS College of Engineering, Bangalore, India.

—————————— ◆ ——————————

Abstract: The Software Industry is unequivocally the backbone of today’s digital society. Since the late 90s, the software industry has generated
enormous amounts of wealth. The benefits of technology are seen daily. However, this industry also plays a huge part in the ever-increasing carbon
footprint as its development is highly energy-intensive. For instance, the carbon footprint of a single neural network model during training can emit as
much as five cars’ carbon footprint in its lifetime. Also, there is an exponential increase in the computational power required to run AI models. The
industry has to focus on the environmental sustainability of software as an integral part. Along with traditional parameters like scalability and security,
the software’s energy efficiency must also be judged in performance reviews and the inclusion of green practices and targets. Computer hardware,
starting from manufacturing to its disposal, leads to pollution of air, water and soil. This affects the present and the future. This paper discusses how
the software industry can take steps to be more green and sustainable in its practices. We propose a Green Software Development Life Cycle (SDLC)
which can make software products more sustainable. By focusing on Green IT and actively taking part in sustainability efforts, the rewards will
outweigh the challenges in the long run.

Keywords: Environmental Sustainability, Software, Software Industry, Software Development Life Cycle, Green IT.

I. INTRODUCTION

Computer Software plays an important role in
today’s society and it is being utilized by all industries and
fields, be it the healthcare industry or the financial industry.
It’s close to impossible to point out an area where it is not
used. It has generally made our lives easier and massively
increased human productivity. However, this comes with a
hefty price, the price the environment pays. It has
worsened a lot of the environmental problems. The use of
energy in the form of electricity is the element of software
that is most significant to global warming. The
development of software can extract humongous amounts
of energy: an AI model on a publicly available dataset of
flowers’ classification achieved an accuracy of 96.17%
with 964J of energy. 2815J of energy was consumed in the
next 1.74% increase in accuracy, and around 400% more
energy was consumed for the last 0.08% increase in
accuracy. Now consider the same example in the context
of the bigger picture. Without hardware, the software has
no utility. Because software and hardware are so
interconnected, the software sector might be blamed for
hardware's environmental effects.

Green IT can be defined as “the systematic
application of practices that enable the minimization of
the environmental impact of IT and allow for

company-wide emission reductions based on
technological innovations”. It is the study and practice of
utilising computers and resources in an efficient,
responsible, and environmentally friendly manner, as
they use a lot of valuable natural resources during their
lifetime and can have long-term detrimental effects on
the environment. According to UNESCO,
“Sustainability is using the resources in a way that does
not compromise the environment or deplete the
materials for future generations”. Sustainable
engineering cannot be the sole responsibility of
Environmental Engineering, but an approach from all
aspects of engineering fields are required. Sustainability
in engineering must be incorporated to advance the
quality of life for mankind. The two big fields of
sustainability in IT are Green IT and Green by IT. Green
IT considers resources and energy consumption and
Greening By IT has the objective of reducing the
environmental impact on the whole (including other
fields) utilizing ICT.

The operation systems, their runtime
environment, and the software product itself all require a
significant amount of energy. The runtime factors that
determine the power wastage of processors for
computing-intensive workloads in Multicore computer
systems are dynamic, short-circuit, and leakage power.
The bulk of power on-chip is consumed by circuit-level
components such as the clock tree, registers, control
and data channel logic circuits, and memory. Choosing

IJSER © 2021
h�p://www.ijser.org

819

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 6, June-2021
ISSN 2229-5518

desktops over laptops (laptops can use up to 80% less
energy than a desktop); using unnecessarily large
monitor sizes (a lot of employees' work does not require
large monitors); and failing to conduct regular energy
audits are some of the ways that software companies
consume more energy than is required.

The software industry has three effects on the
environment -

● Carbon emissions from manufacture, usage, and
disposal;

● Indirectly beneficial or negative emission
consequences; and

● Influencing behaviors and preferences

The software industry is responsible for around
730 million tonnes CO2-eq of total carbon footprint, or
about 1.4% of world greenhouse gas emissions.This
includes not just the power required by the system
equipment during operation, but also all other parts of the
system's life cycle, such as network, data centre, phone,
computer, and other user equipment manufacturing.
Construction of ICT-related structures, as well as
employee travel and transportation, are also covered in
the data.

By enhancing software development and the
SDLC process, the software industry may become more
sustainable and ecologically friendly. Previously,
software development centred on the environment
received little attention. The objectives were primarily
focused on meeting functional and performance
requirements, while disregarding other critical factors
such as energy usage, effective exploitation of IT
resources, IT operating expenses, and overall negative
environmental impact. However, due to the increased
focus on IT in recent years, there is a compelling need to
address these previously ignored elements.
Sustainability and the environment must be kept in mind
by all software companies. Positive and negative
impacts over time should be continuously assessed,
documented and should be further optimized by the
companies. This paper focuses on how the software
industry can make green and environmentally friendly
decisions.

II. LITERATURE SURVEY

The software industry impacts the social,
economic, and environmental aspects of a country. These
impacts can be both positive or negative, direct or indirect.

Therefore, we require more sustainable and innovative
forms of production within the industry to deal with
environmental challenges.

A proposal for a general software development
process modification that may incorporate sustainability
issues into software development processes has been put
forth [1]. To accomplish sustainable software development,
the model includes supporting tools, guidelines, teaching
material, and many artefacts such as sustainability reviews
and previews, continuing process evaluations, and a
sustainability retrospective. Application of this model to an
agile process is easy but faces a problem when it comes to
complex processes. “The Greensoft Model” , has been
regarded as a reference model for green and sustainable
software engineering has been described. [2], which
measures the energy efficiency of a software system. By
using an HTML cache, approximately 8.6% of electricity
consumed whilst generating 19% of reserved capacity is
saved. An alternative model on energy consumption and
cloud computing activities was used to study the empirical
link between energy consumption and cloud computational
activities, as well as system performance. [3].

Software companies also make use of immense
hardware. Software and hardware together lead to a lot of
power consumption and heating issues, adding an extra
dimension when it comes to comparing competing
software architectures. Two software architectures are
compared with an emphasis on energy consumption: Half
Synchronous/Half Asynchronous Concurrency Architecture
(HS/HA), and the Leader/Followers Concurrency
Architecture [4]. On further analysis of these architectures,
it is seen that they produce almost similar throughput but
the one which consumes less energy is the more optimal
architecture, namely the HS/HA Architecture. A two-level
power model has been suggested for estimating per-core
power dissipation on “Chip Multiprocessors (CMP)”
utilising just one “Performance Monitoring Counter (PMC)”
and frequency information from CPUs [5], which aims to
simplify the task for software developers, by developing a
“Software Power Analyser (SPAN)” based model, which
identifies the power behaviour of source code. The overall
error percentage is under 3% after running different
benchmarks on SPAN. Research on the development of
environmentally friendly software can be performed by
modifying the Software Development Life cycle (SDLC) to
include environment-friendly decision making and
processes [6]. Comparison of power consumption of
computers and monitors manufactured pre-2000 and
post-2000 was done showing how decisions taken in the
software industry impact environmental conditions. Some
modifications to the current software development are
suggested that positively impacts the environment and

IJSER © 2021
h�p://www.ijser.org

820

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 6, June-2021
ISSN 2229-5518

helps the organization to build environmentally friendly
software development centres. The biggest absorber of
power, according to analysis, is the processor, and is the
sole constituent that is majorly affected by the load,
whereas all of the other components utilise roughly the
same amount of power both when loaded and when idle.
[7]. These results suggest that the processor should be the
main focus of energy consumption optimization research.

To address problems of carbon emissions and
power consumption of Information Technology (IT)
companies, the environmental impact of software services
are measured leading to awareness about the energy
consumption of software units and software optimization
can be targeted as needed. The three main problem areas
are - process awareness, service awareness and people
awareness - and a service-oriented approach is proposed
to address this problem. The influence of enhancing
software functionality and exploiting older systems on the
environment has been examined [9], which delves into the
tradeoffs between enhancing software functionality and
lowering software energy usage. Data compression is the
major focus, which is a characteristic that reduces the
amount of I/O operations while enhancing CPU usage.

Greener initiatives are in the works. IT should
incorporate cutting-edge, energy-efficient electronic
gadgets and services, as well as every possible
energy-saving option [10]. Sustainable IT encompasses a
core set of elements that characterise SDD design, such as
power management, virtualization, cooling technologies,
recycling, waste disposal, and IT infrastructure optimization
[11]. The focus has been on long-term IT projects to
improve data efficiency. As a result, infrastructure, power,
workload management, product design, virtualization, and
cloud computing activities have received more strategic
and tactical attention. The second wave of long-term IT
services is just getting started, and it will be significantly
more difficult to develop and deploy. It comprises
determining the IT department's role in an organization's
broader Corporate Social Responsibility (CSR) strategy, as
well as researching current trends, issues, and future
implications of Green Computing [12]. The most important
activities in green computing are equipment recycling,
paper consumption reduction, virtualisation, cloud
computing, power management, and green production.
Several major research papers relating to green computing
were surveyed, which highlighted the relevance of
sustainable development [13]. Green Computing research
is being carried out in: Energy Consumption; E-Waste
Recycling; Data Centre Consolidation and Optimization;
Virtualization; IT Products and Eco-labelling. An
optimization framework for managing green data centres
has been proposed using multilevel energy reduction

techniques. An methodology was used to evaluate the
environmental effect of an individual's usage of Information
and Communication Technology (ICT) over a year [14].
Calculating the energy and data consumption of an
average user's use of a typical gadget, as well as the
equivalent energy usage (and hence CO2 generated) at
each stage in the data chain, we may calculate the
embodied carbon of an average device.

The carbon footprint of the ICT industry was
forecasted for the year 2020 [15]. According to
projections, the software sector's carbon footprint
(measured in CO2 emissions) will increase somewhat (at
approximately 4% a year). The entire carbon footprint for
the software business was reported based on a result of
the reference research as shown in Figure 1. A
methodology is described to measure software's carbon
footprint by establishing a model enterprise [16]. On this
basis, a concentration on the development period
calculates the carbon footprint. The resultant carbon
footprint is transformed per person per month into the kg
of CO2 emissions. There are two major parts to making
software greener: activities to make the manufacturing
process greener and actions to make the software
product itself greener. Because one of the key goals of
Green IT is to create environmentally friendly software,
the approaches given here can assist developers and
designers without requiring them to change their software
engineering practises on a whole.

Fig. 1 Carbon Footprint of the ICT industry in 2020 in
terms of CO2 emissions.

III. PROPOSED FRAMEWORK

We attempt to rethink the Software Development
Life Cycle (SDLC) in this paper by adjusting it to fit

IJSER © 2021
h�p://www.ijser.org

821

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 6, June-2021
ISSN 2229-5518

sustainability and include some ideas in each of the
phases: Requirement Engineering, Design, Implementation,
Testing, Deployment, Maintenance, and Disposal.

A. Requirements Engineering: The very first stage in
building any software is requirements engineering.
The main goal is to understand the problem that
the system is trying to solve and deduce the most
suitable methodology to obtain the solution. At this
stage the proposed system should be examined to
determine if the problem is being solved. If not,
then the most energy efficient way forward is to
not develop the product itself. It's also important
to consider the product's shelf life, which aids in
the development of software that can function on
legacy hardware, since new hardware should be
avoided when eliciting and understanding
requirements. As a large quantity of electricity,
paper, and bespoke hardware is utilised for this
purpose, it cannot be deemed a good technique
because the prototypes are only developed to
understand the needs and then discarded. As a
result, creating a reusable prototype that can be
reused in the future is encouraged.

B. Design: The product's design should be
maintained as simple as possible. Complex
designs may demand re-design and greater
documentation effort utilising computers and
devices, resulting in greater power consumption
and other resource use. If the design is complex,
make an attempt to modularize it in order to lessen
the complexity. In addition, repeated design
changes can be costly in terms of time and
resources utilised in the other phases of the SDLC.
A design that is constantly changing may not be
environmentally beneficial, as it could result in a lot
of paperwork, usage of tools to develop or update
the design, impact both old and new hardware and
software, increased power usage, and so on.
Based on the application, programming language,
programmers should build efficient algorithms by
developing a compact design of codes and data
structures.

C. Testing: Performance and resource profiling should
be emphasised as a required component in the
testing process. Without them, additional
hardware, processor cycles, and memory may be
required. It might not be able to work properly with
current or older systems that have little or
moderate hardware resources. Automated testing
should be encouraged because it reduces manual
errors. They also promote test case reuse and

testing process standardisation, which improves
not just testing accuracy, but also productivity and
minimises the amount of power consumed by
additional resources in the manual testing process.

D. Deployment: After design, implementation is the
stage in which the design is turned into a set of
programmes and programme units. At this stage,
software developers should select the most
appropriate programming fashion for the
application and, based on that, a programming
language. The actual software is prepared for
installation in the production environment during
the deployment phase. The size of the installation
package has a significant impact; larger the
installation package, the longer it takes to instal in
the production environment. This increases the
storage and maintenance costs and necessitates a
large amount of disc space for storage. Standard
data compression techniques should be used to
reduce the size of deployment or installation
packages. Standalone Installation could also be
avoided as they can consume a large amount of
disk space. Modern software installation methods
can also be used, such as centrally deploying a
single copy of a programme and allowing users to
access it only when necessary.

E. Maintenance: Software maintenance or evolution
is the process of altering a system after it has been
released in order to accommodate newer versions
or additions. The maintenance stage of the
software engineering process is the most
expensive. The cost is proportional to the amount
of energy wasted. In most cases, software quality
deteriorates during the maintenance phase as
bugs are fixed without understanding the
scenarios completely. There are several
circumstances in which interim solutions are
applied, resulting in rework and the development
of new software system problems. When new
features need to be incorporated in an existing
system, problems such as non-reproducible
defects and resource leaks or needless resource
demands on hardware, processor, memory, and
so on arise; the quality of code is compromised.
Maintenance is typically viewed as a lower-skilled
operation than software development, and is often
delegated to lower-level employees who may lack
experience and knowledge of old and obsolete
programming languages. As a result, it is the
obligation of the top management to provide
maintenance employees with tutorials and courses
to help them get more familiar with old and new

IJSER © 2021
h�p://www.ijser.org

822

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 6, June-2021
ISSN 2229-5518

programming languages. This will speed up the
maintenance procedure while also lowering costs
and enhancing energy efficiency.

F. Disposal: Disposal is the ultimate phase of the
software system. This phase begins when the
software system's lifespan expires. The practise of
reusing software code for future projects in order
to save in-house software development costs is
known as software recycling. Hardware recycling
refers to the process of reusing and recycling
equipment and resources before discarding them.
To conserve natural resources, products that can
be used frequently should be purchased. Efforts
should be made to avoid disposal, which produces
a significant amount of e-waste. If inefficient or old
hardware is identified, it can be reused in other
software systems with reduced resource needs, or
it can be donated to universities with research
interests or educational institutions for
instructional reasons.

Figure 2: A Life Cycle Model for Software
Sustainability

IJSER © 2021
h�p://www.ijser.org

823

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 6, June-2021
ISSN 2229-5518

IV. FURTHER GUIDELINES FOR DEVELOPERS

According to optimization recommendations,
graphic design components account for 54% of the
average website nowadays. Optimising graphics saves
power as a result of lower network demand. Graphic
design components, unlike photographs or charts, are
images used to create borders, tabs, buttons, or a logo
that provides an organisation or a corporation its identity.
Graphic design elements are often smaller and have fewer
colours. As a consequence, the number of colours in an
image is reduced from RGB to a colour palette with a
restricted number of colours, resulting in a significant
reduction in file size (see Table 1). The photos in question
do not need to be stored in the Portable Network Graphics
(PNG) format, which enables indexed palettes, as they do
in JPEG. Images are compressed more successfully in the
PNG format than in the GIF format, resulting in reduced file
sizes. It's also possible to remove words from a logo. The
logo is then utilised as a backdrop graphic below the
HTML text, with no content. Using an indexed palette for
the design components, switching from JPEG to PNG is a
viable technique to reduce transmission and save around
84 percent in both instances (with and without text).
Furthermore, removing the text from PNG and JPEG files
saves roughly 50-60% of the original file size. When
converting from JPEG (with text) to PNG (without text), the
overall savings is roughly 92%. As a result, as shown in
Table 1, optimising graphical design components such as
those mentioned above is advised in order to lower a
website's network load and, as a result, its power
consumption.

Table 1: File Sizes of different Graphical Design Elements at
different optimization levels

Suggestions for Website Optimization Included in
Development Tools: A possible technique to lessen the
network load caused by a website is to optimise
text-based source files made out of it. One option is to
reduce the size of CSS files. CSSTidy
(http://csstidy.sourceforge.net/) is an excellent tool for
minimization.Extraneous characters (such as whitespaces
and line breaks) are removed, as are values and attributes
(such as default values), single properties (such as margin,
border, and font) are shortened, and abbreviations are
used. There are a host of other options for keeping CSS to
a bare minimum.

V. IN-OFFICE BEST PRACTICES

Meeting rooms might be arranged so that natural
light, rather than power-hungry lighting systems, are used
for illumination. Natural ventilation or the use of
energy-efficient fans can be used instead of air
conditioners. Although this would not be practicable in
locations with difficult climatic conditions, it would save not
just energy but also the environment from dangerous
components used in air conditioning.

Each of the SDLC phases may require travel,
which should be avoided completely. For business
meetings, air travel is a common means of transportation.
Jet fuels are notoriously bad for the environment, thus
preparation for other routes of transportation should be
prioritised. Travel should be avoided by employing current
communication by means such as the telephone, real-time
content sharing software, video streaming, and email.

In software companies, storing and maintaining
project artefacts, source, and product deliverables are
commonplace. These are usually kept in huge data centres
that require a specialised space with adequate cooling. The
data centres not only consume a lot of energy, but they
also need to be maintained on a regular basis. Peer-to-peer
storage, often known as distributed storage, is a strategy to
avoid using separate data centres. This will cut power
usage, storage costs, and maintenance costs.

It is possible to avoid the use of paper by storing
information in an electronic format. If authorisation is
necessary, digital signatures can be employed. Any type of
design document, architectural document, flow diagrams,
and so on may be kept in electronic form or with the use of
standardised tools that specialise in completing these
activities. Scratch pads made of electronic material can be
used instead of paper. In the process of information
transfer or technological training, electronic books related
to the product and technology must be preferred over
physical books since they use far less paper.

VI. CONCLUSION

Small steps taken from our end can contribute
vastly in building a sustainable environment. The software
industry being a huge contributor towards carbon
emissions must be handled with care. Application of all the
methods mentioned could help bring the carbon footprint
down and help build a sustainable green software industry.
Reduction in direct and indirect carbon emission
associated with the software industry. 1.4% of the total
greenhouse gas emission comes from IT related industries.
Tweaking the Software development life cycle with the
suggestions provided could help reduce significant

IJSER © 2021
h�p://www.ijser.org

824

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 6, June-2021
ISSN 2229-5518

amounts of power,paper and time. Making use of HTML
cache reduces electricity consumption by 8.6%.. Changing
RGB living colours to colours-palette from 9036 to 1320 for
the file format PNG. This could be reduced to 1290 with
the use of 7 colour palette. A simple switch from JPEG to
PNG can show promising results. Removal of text results
could help electricity consumption by 50% to 60%
approximately. Reduction of travel, reduced lighting in
offices and minimal use of Air conditioning could reduce
power consumption.

REFERENCES

[1] Dick, M., & Naumann, S. (2010). Enhancing
Software Engineering Processes towards
Sustainable Software Product Design. In
EnviroInfo (pp. 706-715).

[2] Kern, Eva & Dick, Markus & Naumann, Stefan &
Guldner, Achim & Johann, Timo. (2013). Green
software and green software engineering -
definitions, measurements, and quality aspects.

[3] F. Chen, J. Schneider, Y. Yang, J. Grundy and Q.
He, "An energy consumption model and analysis
tool for Cloud computing environments," 2012
First International Workshop on Green and
Sustainable Software (GREENS), 2012, pp. 45-50,
DOI: 10.1109/GREENS.2012.6224255.

[4] Zhong, Benjamin & Feng, Ming & Lung,
Chung-Horng. (2010). A Green Computing Based
Architecture Comparison and Analysis.
10.1109/GreenCom-CPSCom.2010.110.

[5] Wang, S., Chen, H., & Shi, W. (2011). SPAN: A
software power analyzer for multicore computer
systems. Sustainable Computing: Informatics and
Systems, 1(1), 23–34.
https://doi.org/10.1016/j.suscom.2010.10.002.

[6] S. S. Shenoy and R. Eeratta, "Green software
development model: An approach towards
sustainable software development," 2011 Annual
IEEE India Conference, 2011, pp. 1-6, DOI:
10.1109/INDCON.2011.6139638.

[7] Capra, E., Formenti, G., Francalanci, C., & Gallazzi,
S. (2010). The Impact of MIS Software on IT
Energy Consumption. ECIS.

[8] Lago, P., & Jansen, T. (2010, December). Creating
environmental awareness in service-oriented

software engineering. In International conference
on service-oriented computing (pp. 181-186).
Springer, Berlin, Heidelberg.

[9] Koçak, S. A., Miranskyy, A., Alptekin, G. I., Bener,
A. B., & Cialini, E. (2013, February). The impact of
improving software functionality on environmental
sustainability. In First International Conference on
Information and Communication Technologies for
Sustainability (ICT4S) (pp. 95-100)

[10] Agarwal, S. (2014). Impact of green computing in
IT industry to make eco friendly environment.
Journal of Global Research in Computer Science,
5(4), 05-10.

[11] Soomro, T. R., & Sarwar, M. (2012). Green
computing: From current to future trends. World
Academy of Science, Engineering and Technology,
63, 538-541.

[12] Harmon, R. R., & Auseklis, N. (2009, August).
Sustainable IT services: Assessing the impact of
green computing practices. In PICMET'09-2009
Portland International Conference on Management
of Engineering & Technology (pp. 1707-1717).
IEEE.

[13] Saha, B. (2018). Green computing: Current
research trends. International Journal of Computer
Sciences and Engineering, 6(3), 467-469.

[14] P. Cooper, T. Crick, T. Tryfonas and G. Oikonomou,
"Whole-Life Environmental Impacts of ICT Use,"
2015 IEEE Globecom Workshops (GC Wkshps),
San Diego, CA, 2015.

[15] Malmodin, J., Bergmark, P., & Lundén, D. (2013).
The future carbon footprint of the ICT and E&M
sectors. on Information and Communication
Technologies, 12.

[16] Kern E, et al, Impacts of software and its
engineering on the carbon footprint of ICT, Environ
Impact Assess Rev (2014),
http://dx.doi.org/10.1016/j.eiar.2014.07.003.

IJSER © 2021
h�p://www.ijser.org

825

IJSER

http://www.ijser.org/

